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ABSTRACT: Codified specifications on wind actions, such as those prescribed in the Eurocode 

EN 1991-1-4, ISO, and ASCE norms, contain various procedures for calculating the buffeting 

response of typical buildings and bridge structures. Most often such procedures provide a simple, 

robust, and operational framework allowing for accurate predictions of the relevant wind loads 

and responses for many types of structures. The codified procedures for calculating the buffeting 

response are, however, not always applicable in the case of complex loading scenarios, such as the 

resonant response of structures with mode shapes of non-constant sign, and some of the prescribed 

mathematical expressions may contain coefficients and variables that are difficult to interpret in a 

physically consistent manner.  

The present document outlines a new codified procedure for calculating the along-wind buffet-

ing response of buildings and bridges. The new procedure is simple and operational, and extends 

the current Eurocode EN 1991-1-4 provisions to cover mode shapes with non-constant signs, al-

lows for the systematic use of cross-sectional admittance functions, and ensures an asymptotically 

consistent modeling of the two-dimensional surface pressure characteristics. The perspective of 

the new calculation procedure is also discussed to reflect on the implications of updating the buf-

feting response calculation procedure in the next revision of the Eurocode. 
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1 INTRODUCTION 

The current Eurocode EN 1991-1-41 provides two alternative procedures for calculating the dy-

namic along-wind buffeting response of structures. The two procedures provide predictions of the 

same order of magnitude, and both procedures assume that: 

 

1. the wind load is determined from the undisturbed wind field; 

2. the structure is linear-elastic with viscous damping; 

3. the along-wind mode considered is uncoupled from other modes. 

 

According to assumption 1 above, the pressure correlation is assumed to be identical to the 

correlation of the longitudinal turbulence in the undisturbed wind field. This assumption may lead 

to an overestimation of the load, due to lack of correlation between wind load on the structure front 

and on the rear face. On the other hand the load will be underestimated due to the fact that pressures 

on the structure are better correlated than the longitudinal turbulence in the undisturbed wind field. 



 

The basis of the procedure outlined in the present document is a cross-sectional admittance 

function, which gives the conversion between the spectrum of the incoming air flow and the spec-

trum of the wind action on a given structural cross section. The cross-sectional admittance function 

is subsequently combined with the correlation of the wind flow for longitudinal turbulence com-

ponent separated along the main axis of the structure. For a line-like structure the correlation be-

tween cross sectional forces will be described well by the correlation of the incoming flow with 

the same separation. The procedure also allows for a more direct application of the inertial forces 

in the determination of the structural response. 

2 STRUCTURAL RESPONSE DUE TO BUFFETING 

The fluctuating part of the structural response consists of two main contributions, originating from 

background turbulence, i.e. the broadband turbulence fluctuations in the wind, and resonance tur-

bulence, i.e. the turbulence fluctuations in the wind in resonance with a natural frequency of the 

structure. In the present Eurocode format, their respective contributions are expressed by statistical 

variance terms in the response, ultimately prescribing the characteristic response. 

It is necessary to include the integral effect of response reduction caused by the lack of full 

surface pressure correlation to avoid an unnecessary overestimation of the background turbulence 

response on large structures. On the other hand, to avoid an underestimation of the resonant re-

sponse on dynamically sensitive structures, the resonant amplification of turbulent loads near a 

structural natural frequency should be included2. In the Eurocode format, the relative effect of 

these two wind effects are modelled by the background response factor 𝐵2 and the resonant re-

sponse factor 𝑅2, respectively. The theory presented in the following subsections is based on the 

Davenport wind load model2. 

2.1 Quasi-static peak wind force model 

Consider a structure of width 𝑏 and height 𝑙, where the mean wind direction is directed towards 

a plate-like surface of coordinates 𝑦 ∈ [0, 𝑏] and 𝑧 ∈ [0, 𝑙]; see Figure 1. 

 

Figure 1. Example of model structure of width 𝑏 and height 𝑙. 

For each point on the surface, let the fluctuating wind load be defined by the sum 

𝐹(𝑦, 𝑧, 𝑡) = 𝐹𝑞(𝑦, 𝑧) + 𝐹t(𝑦, 𝑧, 𝑡), 
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where 𝐹𝑞 is the mean wind point load and 𝐹t is the fluctuating part of the point load due to wind 

turbulence. The mean and fluctuating part may be modelled by2 

𝐹𝑞(𝑦, 𝑧) =
1

2
𝜌 𝑣m(𝑦, 𝑧)2 𝑐f(𝑦, 𝑧), and 𝐹t(𝑦, 𝑧, 𝑡) =  𝜌 𝑣m(𝑦, 𝑧) 𝑢(𝑦, 𝑧, 𝑦)𝑐f(𝑦, 𝑧), 

where 𝜌 is the air density, 𝑣m is the characteristic mean wind velocity, 𝑢 is the along-wind 

turbulence component, and 𝑐f is a force coefficient for the load considered.  

The mean response, which originates from the mean wind load acting on the structure, is then 

𝜇R = ∫ ∫ 𝐹𝑞(𝑦, 𝑧)𝐼R(𝑦, 𝑧)
𝑏

0

𝑙

0

𝑑𝑦 𝑑𝑧, 

where 𝐼𝑅(𝑦, 𝑧) is the response influence function equal to the response obtained for a unit load 

acting at the point (𝑦, 𝑧). As an example, 𝐼R(𝑦, 𝑧) = 𝑧 in order to evaluate the bending moment 

at 𝑧 = 0. 

The background turbulent response is calculated by treating the fluctuating wind load caused by 

turbulence 𝐹t in the quasi-static fashion 

𝑅b(𝑡) = ∫ ∫ 𝐹t(𝑦, 𝑧, 𝑡)𝐼R(𝑦, 𝑧)
𝑏

0

𝑙

0

𝑑𝑦 𝑑𝑧. 

The resonant turbulent response may be calculated using modal analysis. The resonant response 

is usually dominated by a fundamental mode and the corresponding generalized fluctuating load 

𝑄(𝑡) = ∫ ∫ 𝐹t(𝑦, 𝑧, 𝑡)𝜉(𝑦, 𝑧)
𝑏

0

𝑙

0

𝑑𝑦 𝑑𝑧, 

where 𝜉(𝑦, 𝑧) is the non-dimensional deflection mode shape. 

2.2 Evaluation of responses as stochastic processes 

The fluctuating part of the load due to wind turbulence may be treated as a stochastic process. This 

gives the following expression for the variance of the background response3 

𝜎b
2 = ∫ ∫ ∫ ∫ 𝑔b(𝑦1, 𝑧1)𝑔b(𝑦2, 𝑧2)𝜌𝑢(𝑟𝑦, 𝑟𝑧)

𝑏

0

𝑏

0

𝑑𝑦1𝑑𝑦2

𝑙

0

𝑙

0

𝑑𝑧1𝑑𝑧2, 

where 𝑔b(𝑦, 𝑧) = 𝜌𝑣m(𝑦, 𝑧)𝑐f(𝑦, 𝑧)𝐼R(𝑦, 𝑧)𝜎𝑢(𝑦, 𝑧). The function 𝜌𝑢(𝑟𝑦, 𝑟𝑧) is the correlation 

coefficient for the along-wind turbulence component separated by 𝑟𝑦 = |𝑦2 − 𝑦1|  and 𝑟𝑧 =
|𝑧2 − 𝑧1|. 

The dynamic part of the deflection may as an approximation be expressed as 𝑎(𝑡)𝜉(𝑥, 𝑦), 

where 𝑎(𝑡) is a stochastic amplitude function. The spectral density of 𝑎(𝑡) is then given by 

𝑆𝑎(𝑛) = |𝐻𝑖(𝑛)|2𝑆𝑄(𝑛), 

where 𝐻𝑖(𝑛) is the frequency response function associated with mode 𝑖 and the natural fre-

quency 𝑛𝑖. 

Let the power spectrum of the along-wind turbulence be denoted by 𝑆𝑢. The generalized load 

spectrum is then3 

𝑆𝑄(𝑛) = ∫ ∫ ∫ ∫ 𝑔r(𝑦1, 𝑧1, 𝑛)𝑔r(𝑦2, 𝑧2, 𝑛)𝜓𝑢(𝑟𝑦, 𝑟𝑧 , 𝑛, 𝑣m)
𝑏

0

𝑏

0

𝑑𝑦1𝑑𝑦2

𝑙

0

𝑙

0

𝑑𝑧1𝑑𝑧2, 

where 𝑔r(𝑦, 𝑧) = 𝜌𝑣m(𝑦, 𝑧)𝑐f(𝑦, 𝑧)𝜉(𝑦, 𝑧)√𝑆𝑢(𝑦, 𝑧, 𝑛).  The function 𝜓𝑢(𝑟𝑦, 𝑟𝑧 , 𝑛, 𝑣m)  is the 

normalized co-spectrum for the along-wind turbulence components separated by 𝑟𝑦 and 𝑟𝑧. The 

variance of the stochastic amplitude function 𝑎(𝑡) is then found by an integration of the spectral 

density, i.e. 



𝜎𝑎
2 = ∫ |𝐻𝑖(𝑛)|2𝑆𝑄(𝑛)

∞

0

𝑑𝑛. 

The damping consists of both aerodynamic and structural damping, and is often relatively low, 

meaning 𝜁𝑖 ≪ 1, and 𝑆𝑄(𝑛) usually has most of its values at frequencies below 𝑛𝑖. In this case 

the so-called white noise approximation may be applied3 

𝜎𝑎
2 ≈ 𝑆𝑄(𝑛𝑖) ∫ |𝐻𝑖(𝑛)|2

∞

0

𝑑𝑛 ≈
𝜋2

2𝛿𝑖

1

𝑚G
2  

𝑛𝑖

(2𝜋𝑛𝑖)4
𝑆𝑄(𝑛𝑖), 

where the last integral is found by contour integration and 𝑚G denotes the modal mass. The 

damping is here expressed by a logarithmic decrement, i.e. 𝛿𝑖 = 2𝜋𝜁𝑖, valid for small damping 

ratios. The fluctuating loads due to resonant buffeting may then be expressed by inertia forces 

proportional to the acceleration, and the variance of the resonant response becomes 

𝜎R
2 = (∫ ∫ 𝜇(𝑦, 𝑧)𝜉(𝑦, 𝑧) 𝐼R(𝑦, 𝑧)

𝑏

0

𝑑𝑦
𝑙

0

𝑑𝑧)

2

(2𝜋𝑛𝑖)
4 𝜎𝑎

2 =
𝜋2

2𝛿𝑖
 𝐾m

2  𝑛𝑖  𝑆𝑄(𝑛𝑖), 

where the load-response parameter 𝐾m is defined as 

𝐾m =
∫ ∫ 𝜇(𝑦, 𝑧)𝜉(𝑦, 𝑧)𝐼R(𝑦, 𝑧)

𝑏

0
𝑑𝑦

𝑙

0
𝑑𝑧

𝑚G
=

∫ ∫ 𝜇(𝑦, 𝑧)𝜉(𝑦, 𝑧)𝐼R(𝑦, 𝑧)
𝑏

0
𝑑𝑦

𝑙

0
𝑑𝑧

∫ ∫ 𝜇(𝑦, 𝑧)𝜉2(𝑦, 𝑧)
𝑏

0
𝑑𝑦

𝑙

0
𝑑𝑧

. 

Here 𝜇(𝑦, 𝑧) denotes the mass per unit area of the structure considered. The load-response pa-

rameter is proportional to the ratio between the generalized load and the response calculated using 

inertia forces. The unit of 𝐾m is equal the unit of 𝐼R. 

2.3 Background and resonant response factor 

The standard deviation of the structural response is assumed to be the sum of the uncorrelated 

contributions from the background and resonant turbulence response. Allowing different peak fac-

tors for the two contributions gives the following relation for the characteristic response 

𝑅max = 𝜇R ± √(𝑘B ⋅ 𝜎B)2 + (𝑘p ⋅ 𝜎R)
2

. 

The characteristic response may be defined relative to the mean response using the along-wind 

turbulence intensity, 𝐼𝑢 = 𝜎𝑢/𝑈, by the expression 

 𝑅max = 𝜇R (1 ± 2 ⋅ 𝐼𝑢 ⋅ √(𝑘B ⋅ 𝐵)2 + (𝑘p ⋅ 𝑅)
2

), (1) 

where  

𝐵2 =
𝜎B

2

4𝐼𝑢
2 ⋅ 𝜇R

2 ,    𝑅2 =
𝜎R

2

4𝐼𝑢
2 ⋅ 𝜇R

2 . 

The parameters 𝐵2 and 𝑅2 are denoted the background response factor and the resonant re-

sponse factor, respectively. The following section will explain how 𝐵2 and 𝑅2 may under cer-

tain assumptions be evaluated in a relatively simple approximate format, even though they are 

represented mathematically by rather complex quadruple integrals; see Eq. (6) and (7). 

Note that it is not always possible to express the background and resonant turbulence response 

using the mean response, for instance when the mean response is zero or for response influence 

functions and structural mode shapes with a non-constant sign. This will be discussed further in 

Section 5. 
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3 PRODUCT FORMAT FOR DOUBLE AND QUADRUPLE INTEGRALS 

For simplicity, it is in the following assumed that the force coefficient 𝑐f, the characteristic mean 

wind velocity 𝑣m, the wind turbulence power spectrum 𝑆𝑢, and the along-wind variance 𝜎𝑢
2 are 

constant, or at least evaluated at a single representative point on the structure. Furthermore, the 

correlation and co-spectral properties are modelled by two-dimensional exponential expressions3,4 

𝜌𝑢(𝑟𝑦, 𝑟𝑧) = exp (−√(
𝑟𝑦

𝐿𝑢
𝑦)

2

+ (
𝑟𝑧

𝐿𝑢
𝑧 )

2

),   𝜓𝑢(𝑟𝑦, 𝑟𝑧 , 𝑛𝑖, 𝑣m) = exp (−
𝑛𝑖

𝑣m

√(𝑐𝑦𝑟𝑦)
2

+ (𝑐𝑧𝑟𝑧)2), 

where 𝐿𝑢
𝑦

, 𝐿𝑢
𝑧  are the integral length scales, and 𝑐𝑦, 𝑐𝑧 are decay constants for the normalized co-

spectrum of the along-wind turbulence components associated with separations along 𝑦 and z. 

Finally, it is also assumed that the two-dimensional response influence functions and mode shapes 

may be expressed as product of two one-dimensional functions, i.e. 𝐼R(𝑦, 𝑧) = 𝐼R,𝑦(𝑦)𝐼R,𝑧(𝑧) and 

𝜉(𝑦, 𝑧) = 𝜉𝑦(𝑦)𝜉𝑧(𝑧). 

Let the non-dimensional power spectral density function be defined by 𝑆N,𝑢(𝑛) =
𝑛𝑆𝑢(𝑛)

𝜎𝑢
2 . Then 

the expressions for 𝐵2 and 𝑅2 takes the form 

 
𝐵2 =

∫ ∫ ∫ ∫ 𝐼R,𝑦(𝑦1)𝐼R,𝑧(𝑧1)𝐼R,𝑦(𝑦2)𝐼R,𝑧(𝑧2)𝜌𝑢(𝑟𝑦, 𝑟𝑧)
𝑏

0

𝑏

0
𝑑𝑦1 𝑑𝑦2

𝑙

0

𝑙

0
𝑑𝑧1 𝑑𝑧2

(∫ ∫ 𝐼R,𝑦(𝑦)𝐼R,𝑧(𝑧)
𝑏

0

𝑙

0
𝑑𝑦 𝑑𝑧)

2 , (2) 

 

𝑅2 =
𝜋2

2𝛿𝑖

𝑆N,𝑢(𝑛𝑖)𝐾m
2

∫ ∫ ∫ ∫ 𝜉𝑦(𝑦1)𝜉𝑧(𝑧1)𝜉𝑦(𝑦2)𝜉𝑧(𝑧2)𝜓𝑢(𝑟𝑦, 𝑟𝑧, 𝑛𝑖 , 𝑣m)
𝑏

0

𝑏

0
𝑑𝑦1 𝑑𝑦2

𝑙

0

𝑙

0
𝑑𝑧1 𝑑𝑧2

(∫ ∫ 𝐼R,𝑦(𝑦)𝐼R,𝑧(𝑧)
𝑏

0

𝑙

0
𝑑𝑦 𝑑𝑧)

2 . (3) 

Note that both expressions consist of quadruple integrals of response influence function or mode 

shapes multiplied by an exponential term.  

3.1 Asymptotic representation of quadruple integrals as double integrals 

The evaluation of the quadruple integrals given in Eq. (2) and (3) may be greatly simplified by 

utilizing an approximate representation with correct asymptotic behavior for situations corre-

sponding to a large structural dimension compared to the integral length scale, for the background 

turbulence case, or corresponding to a large dimension compared to the average size of the turbu-

lent vortices, for the resonant turbulent case.  

Denote the ratios between the structural dimensions and integral length scales by 𝜙𝑦 = 𝑏/𝐿𝑢
𝑦

 

and 𝜙𝑧 = 𝑙/𝐿𝑢
𝑧 . Then the following asymptotic limit is obtained3 

 
lim

𝜙𝑦→∞,𝜙𝑧→∞
𝐵2 =

𝜋

2
⋅ ( lim

𝜙𝑦→∞
𝐵𝑦

2) ⋅ ( lim
𝜙𝑧→∞

𝐵𝑧
2), (4) 

where 

𝐵𝑦
2(𝜙𝑦) =

∫ ∫ 𝐼R,𝑦(𝑦1)𝐼R,𝑦(𝑦2) exp (−𝜙𝑦

𝑟𝑦

𝑏
)

𝑏

0

𝑏

0
𝑑𝑦1𝑑𝑦2

(∫ 𝐼R,𝑦(𝑦)
𝑏

0
𝑑𝑦)

2 , 

and similar for 𝐵𝑧
2(𝜙𝑧). The factor 𝜋/2 is a purely mathematical term representing the ratio be-

tween the product of plate-like and line-line integral functions in the asymptotic limit. 



The mathematical simplification presented above is much similar for the resonant response fac-

tor, except that 𝜙𝑦 = 𝑏𝑐𝑦𝑛𝑖/𝑣m and 𝜙𝑧 = 𝑙𝑐𝑧𝑛𝑖/𝑣m, and the response influence function in the 

numerator is replaced by the mode shape, i.e. 

 lim
𝜙𝑦→∞,𝜙𝑧→∞

𝑅2 =
𝜋2

2𝛿𝑖
𝑆N,𝑢(𝑛𝑖) ⋅

𝜋

2
⋅ 𝐾m

2 ⋅ ( lim
𝜙𝑦→∞

𝑅𝑦
2) ⋅ ( lim

𝜙𝑧→∞
𝑅𝑧

2), (5) 

where  

𝑅𝑦
2(𝜙𝑦) =

∫ ∫ 𝜉𝑦(𝑦1)𝜉𝑦(𝑦2) exp (−𝜙𝑦

𝑟𝑦

𝑏
)

𝑏

0

𝑏

0
𝑑𝑦1𝑑𝑦2

(∫ 𝐼R,𝑦(𝑦)
𝑏

0
𝑑𝑦)

2 . 

and similar for 𝑅𝑧
2(𝜙𝑧). 

3.2 Analytic expression for uniform response influence function or mode shape 

It is the goal to make a simple analytic framework for evaluating integrals of the form similar to 

𝐵𝑦
2(𝜙𝑦) and 𝑅𝑦

2(𝜙𝑦) for constant-sign response influence functions and mode shapes. The fun-

damental reference case is when the response influence function is uniform, i.e. 𝐼R,𝑦(𝑦) = 1, for 

which the double integral has the analytic solution3 

𝐵U
2(𝜙𝑦) =

2

𝜙𝑦
2

(𝜙𝑦 − 1 + exp(−𝜙𝑦)). 

The uniform reference case satisfies the asymptotic limit 

lim
𝜙𝑦→∞

𝐵U
2(𝜙𝑦) =

2

𝜙𝑦
. 

The asymptotic limit of 𝐵𝑦
2(𝜙𝑦) for a general response influence function is3 

lim
𝜙𝑦→∞

𝐵𝑦
2(𝜙𝑦) =

2

𝜙𝑦

𝑏 ∫ 𝐼R,𝑦
2 (𝑦)

𝑏

0
𝑑𝑦

(∫ 𝐼R,𝑦(𝑦)
𝑏

0
𝑑𝑦)

2. 

A scaling of the argument in the analytic expression associated with the uniform reference case 

may therefore be used to obtain an asymptotically correct analytic expression for 𝐵𝑦 of the form 

𝐵𝑦
2(𝜙𝑦) ≈ 𝐵U

2(𝛼𝐵,𝑦 ⋅ 𝜙𝑦), where 𝛼𝐵,𝑦 =
(∫ 𝐼R,𝑦(𝑦)

𝑏
0 𝑑𝑦)

2

𝑏 ∫ 𝐼R,𝑦
2 (𝑦)

𝑏
0 𝑑𝑦

. 

For the background response, the correlation scaling factor 𝛼𝐵,𝑦 depends only on the response 

influence function, and it can be shown that lim
𝜙𝑦→0

𝐵𝑦
2(𝜙𝑦) = 1 independent on the response influ-

ence function2. This means that the correct asymptotic behaviour for small values of 𝜙𝑦 is also 

obtained using the approximation. The same approximation may be applied to 𝐵𝑧
2(𝜙𝑧). 

A similar approximation may be applied to the resonant response factor. Again, the aim is to 

express the double integral formula by the simple analytic expression for a uniform response in-

fluence function, 𝐼R,𝑦(𝑦) = 1, and uniform mode shape, 𝜉𝑦(𝑦) = 1, i.e. 

𝑅U
2 (𝜙𝑦) =

2

𝜙𝑦
2

(𝜙𝑦 − 1 + exp(−𝜙𝑦)), 

for which the asymptotic limit is given by 

lim
𝜙𝑦→∞

𝑅U
2 (𝜙𝑦) =

2

𝜙𝑦
. 
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The asymptotic limit of 𝑅𝑦
2(𝜙𝑦) for a general type of mode shape is 

lim
𝜙𝑦→∞

𝑅𝑦
2(𝜙𝑦) =

2

𝜙𝑦

𝑏 ∫ 𝜉𝑦
2(𝑦)

𝑏

0
𝑑𝑦

(∫ 𝐼R,𝑦(𝑦)
𝑏

0
𝑑𝑦)

2. 

An asymptotically correct analytic expression for the integral is therefore given by 

𝑅𝑦
2(𝜙𝑦) ≈ 𝑅U

2 (𝛼𝑅,𝑦 ⋅ 𝜙𝑦), where 𝛼𝑅,𝑦 =
(∫ 𝐼R,𝑦(𝑦)

𝑏
0 𝑑𝑦)

2

𝑏 ∫ 𝜉𝑦
2(𝑦)

𝑏
0

𝑑𝑦
. 

The correlation scaling factor 𝛼𝑅,𝑦 depends on the mode shape and the response influence func-

tion. Due to the asymptotic behaviour of 𝑅U
2 , it is also possible to include the effect of the load-

response parameter 𝐾m using an additional scaling of the argument, i.e. 

𝐾m
2 ⋅ 𝑅𝑦

2(𝜙𝑦) ≈ 𝑅U
2 (𝛼𝑅,𝑦 ⋅ 𝜙𝑦), where 𝛼𝑅,𝑦 =

∫ 𝜉𝑦
2(𝑦)

𝑏
0

𝑑𝑦⋅ (∫ 𝐼R,𝑦(𝑦)
𝑏

0
𝑑𝑦)

2

𝑏 (∫ 𝜉𝑦(𝑦)𝐼R,𝑦(𝑦)
𝑏

0 𝑑𝑦)
2 . 

The same approximation may be applied to 𝑅𝑧
2(𝜙𝑧), but that the scaling using 𝐾m should only 

be applied to either 𝑅𝑦
2(𝜙𝑦) or 𝑅𝑧

2(𝜙𝑦). 

The presented approximation for the resonant response factor does not necessarily ensure a cor-

rect asymptotic behaviour for 𝜙𝑦 → 0. In the uniform reference case, the limit for 𝜙𝑦 → 0 is 

unity, while the correct asymptotic value is 

lim
𝜙𝑦→0

(𝐾m
2 ⋅ 𝑅𝑦

2(𝜙𝑦)) = 𝐾m
2 ⋅

(∫ 𝜉𝑦(𝑦)
𝑏

0
𝑑𝑦)

2

(∫ 𝐼R,𝑦(𝑦)
𝑏

0
𝑑𝑦)

2. 

This shows that the correct asymptotics are obtained for 𝜙𝑦 → 0 if the mode shape and response 

influence functions are of similar form, e.g. both uniform or both linear. 

The additional scaling of the argument provides a great simplification of the calculation format. 

The resonant response factor is for typical structures often evaluated at relatively large values of 

𝜙𝑦, where the approximation turns out to be fairly precise, see also Section 4.2. 

The idea of using a uniform reference influence response function or mode shape to develop 

simple analytic expressions for evaluating general background and resonant response factors is 

also a part of the theory behind Procedure 1 in the current Eurocode, which was developed by 

Prof. G. Solari, University of Genoa. 

3.3 Product format for response influence function and mode shapes of constant sign 

Consider a tall structure where 𝑙 > 𝑏 and assume that the response influence function and mode 

shape does not depend on 𝑦, i.e. 𝐼R,𝑦(𝑦) = 𝜉𝑦(𝑦) = 1. Let the considered response be the bend-

ing moment at 𝑧 = 0, corresponding to the response influence function 𝐼R,𝑧(𝑧) = 𝑧. This is a 

model scenario covering the along-wind response of a typical tall building. In the following text, 

the subscript “L” is used to denote quantities associated with the main structural dimension. 

Define the one-dimensional admittance function for constant sign response influence function 

and mode shapes of constant sign via the uniform reference case, i.e. 

𝜒U
2(𝜙) =

2

𝜙2
(𝜙 − 1 + exp(−𝜙)). 

Based on the derivation presented previously in this section, the background response factor may 

then be approximated by 



 
𝐵2 ≈ 𝜒U

2 (
2

𝜋
⋅ 𝜙𝑦) ⋅ 𝜒U

2(𝛼𝐵,L ⋅ 𝜙𝑧), where 𝛼𝐵,L =
(∫ 𝐼R,𝑧(𝑧)

𝑙
0 𝑑𝑧)

2

𝑙 ∫ 𝐼R,𝑧
2 (𝑦)

𝑙
0

𝑑𝑧
=

3

4
. (6) 

This factor is to be utilized in Eq. (1). Note that the admittance combination factor of 2/𝜋 is in-

cluded by a scaling of the argument of the admittance function associated with the smallest struc-

tural dimension. This ensures that the correct asymptotic behavior of the product format is also 

obtained for in the asymptotic limit of line-line structures, since lim
𝜙→0

𝜒U
2 (

2

𝜋
⋅ 𝜙) = 1. 

Similar to the approximation of the background response factor, the resonant response factor may 

be approximated by 

 
𝑅2 ≈

𝜋2

2𝛿𝑖
𝑆N,𝑢(𝑛𝑖) ⋅ 𝜒U

2 (
2

𝜋
⋅ 𝜙𝑦) ⋅ 𝜒U

2(𝛼𝑅,L ⋅ 𝜙𝑧), where  𝛼𝑅,L =
∫ 𝜉𝑧

2(𝑧)
𝑙

0
𝑑𝑧⋅ (∫ 𝐼R,𝑧(𝑧)

𝑙
0

𝑑𝑧)
2

𝑙 (∫ 𝜉𝑧(𝑧)𝐼R,𝑧(𝑧)
𝑙

0
𝑑𝑧)

2 . (7) 

This factor is to be utilized in Eq. (1). 

Mode shapes are often approximated by an exponential expression of the form 𝜉𝑧(𝑧) = (𝑧/𝑙)𝜁, 

where 𝜁 ≥ 0. The uniform (𝜁 = 0), linear (𝜁 = 1), and parabolic (𝜁 = 2) mode shapes are ex-

amples. The correlation scaling factor 𝛼𝑅,L is for such an expression given by 

𝛼𝑅,L =
∫ (

𝑧
𝑙
)

2𝜁𝑙

0
𝑑𝑧 ⋅  (∫ 𝐼R,𝑧(𝑧)

𝑙

0
𝑑𝑧)

2

𝑙 (∫ (
𝑧
𝑙
)

𝜁

𝐼R,𝑧(𝑧)
𝑙

0
𝑑𝑧)

2 =
1

4
⋅

(𝜁 + 2)2

2 ⋅ 𝜁 + 1
. 

The procedure outlined above illustrates the general applicability of the product format. 

3.4 Characteristic along-wind acceleration 

The characteristic peak acceleration of a structure is relevant for occupant comfort. Adopting the 

definitions presented in the previous subsections, the variance of the peak structural acceleration 

is given by 

𝜎acc
2 = (2𝜋𝑛𝑖)4 𝜎𝑎

2 = 𝑅2 ⋅
4𝐼𝑢

2 ⋅ 𝜇R
2

(∫ ∫ 𝜇(𝑦, 𝑧)𝜉(𝑦, 𝑧) 𝐼𝑅(𝑦, 𝑧)
𝑏

0
𝑑𝑦

𝑙

0
𝑑𝑧)

2. 

The standard deviation scales with the mode shape and may be expressed by 

𝜎acc(𝑧) = 2 ⋅ 𝑐f ⋅ 𝐼𝑢 ⋅ 𝑞m ⋅ 𝑏 ⋅ 𝐾𝑅,L ⋅ 𝑅 ⋅
𝜉𝑧(𝑧)

𝑚e ⋅ 𝜉max
, 

where 𝜉max is the mode shape value at the point with maximum amplitude, 𝑚e denotes a refer-

ence mass per unit length, and the mean wind velocity pressure 𝑞m and the load distribution factor 

𝐾𝑅,L are defined as 

𝑞m =
1

2
𝜌𝑣m

2 ,     𝐾𝑅,L =
 ∫ 𝐼R(𝑧)

𝑙

0
𝑑𝑧

∫ 𝜉𝑧(𝑧)𝐼R(𝑧)
𝑙

0
𝑑𝑧

. 

For mode shapes given by an exponential expression of the form 𝜉𝑧(𝑧) = (
𝑧

𝑙
)

𝜁

, where 𝜁 ≥ 0, the 

load distribution factor 𝐾𝑅,L is given by 

 𝐾𝑅,L =
 ∫  𝐼R(𝑧)

𝑙

0
𝑑𝑧

∫ (
𝑧
𝑙
)

𝜁

𝐼R(𝑧)
𝑙

0
𝑑𝑧

=
1

2
⋅ (𝜁 + 2). 
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For mode shapes of constant sign, the load distribution factor 𝐾𝑅 is the scaling of a load distribu-

tion proportional to the mode shape resulting in a response identical to that of a uniform load 

distribution, see Figure 2. 

  

Figure 2. For mode shapes of constant sign, the load distribution factor 𝐾𝑅  is the scaling of a load distribution pro-

portional to the mode shape resulting in a response identical to that of a uniform load distribution, i.e. 𝑀U = 𝑀𝑅. 

4 ASYMPTOTIC BEHVAVIOUR OF PRODUCT FORMAT 

The following section illustrates the asymptotic behavior of the proposed product format. The 

model scenario is again the along-wind response of a tall building, i.e. 𝑙 > 𝑏 and a response in-

fluence function and mode shape that do not depend on 𝑦, i.e. 𝐼R,𝑦(𝑦) = 𝜉𝑦(𝑦) = 1, Also, let the 

response be the bending moment at 𝑧 = 0, corresponding to 𝐼R,𝑧(𝑧) = 𝑧.  

4.1 Background response factor 

The background response factor 𝐵2 determined using the quadruple integral (Eq. (2)), using the 

product of two double integrals (Eq. (4)), and using the proposed product format (Eq. (6)) are all 

presented in Figure 3, for 𝜙𝑦 = 0 and 𝜙𝑦 = 0.5 ⋅ 𝜙𝑧. The two scenarios correspond to a line-like 

structure and a structure where 𝑏 ≈ 0.5 ⋅ 𝑙, respectively.  

  

Figure 3. The background response factor 𝐵2 determined by numerical integration of the quadruple integral 

(Eq. (2)), using the product of two double integrals (Eq. (4)), and using the proposed product format (Eq. (6)). The 

plots consider 𝜙𝑦 = 0 (left figure) and 𝜙𝑦 = 0.5 ⋅ 𝜙𝑧 (right figure). 

Figure 3 illustrates that the proposed product format is a very good approximation of the quadruple 

integral for all values of 𝜙𝑧. The admittance combination factor of 𝜋/2 is clearly necessary to 

𝑝  𝑝 ⋅ 𝐾𝑅  

𝑀U  𝑀𝑅  



include to ensure a correct asymptotic behavior when both 𝜙𝑦 and 𝜙𝑧 approach infinity. When 

both 𝜙𝑦 and 𝜙𝑧 approach zero, the product of double integrals (Eq. (4)) approaches 𝜋/2. 

4.2 Resonant response factor 

Let the mode shape along the 𝑧 dimension be parabolic, i.e. 𝜉𝑧(𝑧) = (𝑧/𝑙)2.  The resonant re-

sponse factor 𝑅2 determined using the quadruple integral (Eq. (3)), using the product of two dou-

ble integrals (Eq. (5)), and using the proposed product format (Eq. (7)) are all presented in Figure 4, 

using the expression 𝑅2/(
𝜋2

2𝛿𝑖
𝑆N,𝑢(𝑛𝑖)) , for 𝜙𝑦 = 0 and 𝜙𝑦 = 0.5 ⋅ 𝜙𝑧. The plots illustrate that 

the proposed product format is a very good approximation of the quadruple integral for 𝜙𝑧 ≥ 10. 

The admittance combination factor of 𝜋/2 is clearly necessary to include to ensure a correct as-

ymptotic behavior when both 𝜙𝑦 and 𝜙𝑧 approach infinity. For 𝜙𝑧 < 10 the proposed format 

is conservative. 

  

Figure 4. The expression 𝑅2/(
𝜋2

2𝛿𝑖
𝑆N,𝑢(𝑛𝑖)) evaluated for a parabolic mode shape determined by numerical integra-

tion of the quadruple integral (Eq. (3)), using the product of two double integrals (Eq. (5)), and using the proposed 

product format (Eq. (7)). The plots consider 𝜙𝑦 = 0 (left figure) and 𝜙𝑦 = 0.5 ⋅ 𝜙𝑧 (right figure). 

For a typical type of structure covered by the present Eurocode, the natural frequency in Hertz of 

may be approximated by 𝑛𝑖 ≈ 50/𝑙, and adopting typical values of the decay constant, 𝑐𝑧 = 10, 

and the characteristic mean wind velocity, 𝑣m = 25 m/s, implies that 𝜙𝑧 ≈ 20. This underlines 

that typical structures correspond to situations where the proposed product format is a very good 

approximation. 

As seen in Figure 4, the three different formula has different asymptotic limits for 𝜙𝑧 → 0, see 

also Section 3.2. The quadruple integral approaches (5/6)2, the product of double integrals ap-

proaches 𝜋 2⁄ ⋅ (5 6⁄ )2, while the proposed product format approaches 1. 

Note that the comparison of the resonant response factor for a linear mode shape, i.e. 𝜉𝑧(𝑧) =
𝑧/𝑙, is equivalent to the results presented for the background response factor in the previous sub-

section, since the response influence function is assumed linear. 

5 REPONSE INFLUENCE FUNCTIONS AND MODE SHAPES WITH CHANGING SIGNS 

For non-constant sign response influence functions or mode shapes, it is not possible to express 

the fluctuating part of the structural response in terms of the mean response. Instead, the fluctuating 
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part of the structural response may be expressed using a non-uniform reference load distribution 

for the background response and by equivalent static loads for the resonant response. The aerody-

namic admittance functions may then be expressed using their analytic expressions, which exist 

for several fundamental structure types, such as cantilever and simply supported structures. The 

mode shapes associated with these fundamental structures are illustrated in Figure 5. 

 

Cantilever Simply supported 

  

Figure 5. Mode shapes associated with a cantilever and a simply supported structure with three supports. 

For simplicity, only the resonant response factor is considered in the following, but the principles 

are equivalent for the background response factor. 

Let the model structure have its main direction along 𝑧, and a uniform response influence func-

tion and mode shape along 𝑦. The characteristic response due to resonant turbulence alone is then 
𝑅max,𝑅 = 𝑘p ⋅ 2 ⋅ 𝑐f ⋅ 𝐼𝑢 ⋅ 𝑞m ⋅ 𝑏 ⋅ 𝑙 ⋅ 𝐾m ⋅ 𝑅, 

where the resonant response factor is 

𝑅2 =
𝜋2

2𝛿𝑖
𝑆N,𝑢(𝑛𝑖) ⋅ 𝜒U

2 (
2

𝜋
⋅ 𝜙𝑦) ⋅ 𝜒L

2(𝜙𝑧). 

The analytic expressions of the one-dimensional admittance function for the cantilever structure is 

𝜒L
2(𝜙) =

2

3 ⋅ 𝜙
−

2

𝜙2
+

8

𝜙4
− 𝑒−𝜙 (

2

𝜙2
+

8

𝜙3
+

8

𝜙4
), 

and for a simply supported structure with three supports it is 

𝜒L
2(𝜙) =

𝑒−𝜙

(4 ⋅ 𝜋2 + 𝜙2)2
(𝑒𝜙 ⋅ (4 ⋅ 𝜋2 ⋅ (𝜙 + 2) + 𝜙3) − 8 ⋅ 𝜋2). 

The fluctuating part of the structural response due to resonant turbulence may be expressed using 

a non-uniform reference load distribution defined relative to the mode shape, i.e. 

𝐹w(𝑧) = 𝐹w,f 𝜉𝑧(𝑧)/𝜉max, 
where the maximum load per unit length is 𝐹w,f. The response associated with this load is 

𝑅max,𝑅 = 𝐹w,f ∫ 𝜉𝑧(𝑧)𝐼R(𝑧)
𝑙

0
𝑑𝑧. 

The maximum amplitude of the fluctuating wind load per unit length may then be evaluated as  
𝐹w,f = 2 ⋅ 𝑘p ⋅ 𝑐f ⋅ 𝐼𝑢 ⋅ 𝑞m ⋅ 𝑏 ⋅ 𝐾𝑅,L ⋅ 𝑅, 

where 

𝐾𝑅,L =
𝐾m

1
𝑙 ∫ 𝜉𝑧(𝑧)𝐼R(𝑧)

𝑙

0
𝑑𝑧

=
1

1
𝑙 ∫ 𝜉𝑧

2(𝑧)
𝑙

0
𝑑𝑧

. 



Note that this expression for the load distribution factor 𝐾𝑅,L is not identical to the expression 

defined in Section 3.4 for a constant sign mode shape. For the cantilever model structure the load 

distribution factor becomes 𝐾𝑅,L = 3 and for the simply supported model structure 𝐾𝑅,L = 2. 

Since the fluctuating part of the structural response due to resonant turbulence is expressed rel-

ative to the mode shape, the fluctuating wind load determined above is in principle an equivalent 

static load. This also implies that the maximum amplitude of the fluctuating wind load per unit 

length 𝐹w,f does not depend on the response influence function. 

6 PERSPECTIVE 

One of the advantages of the new procedure is that the actual correlation of pressures and forces 

is taken into account via the cross-sectional admittance function. The current assumption of equiv-

alence between wind pressure correlation and velocity correlation does not provide consistent re-

sults, and this non-consistency could be removed by the new approach proposed. The approach 

also facilitates the use of structure-specific wind load characteristics, such as aerodynamic admit-

tance functions, determined directly from wind tunnel experiments. 

The new procedure will relatively easily accommodate codified extensions in form of mode shapes 

with changing sign, across-wind buffeting response, and torsional buffeting response. The proce-

dure described above has been applied successfully in buffeting response analyses for long-span 

cable-supported bridges. It is believed that the same approach may turn out to give a consistent 

and operational description of buffeting wind actions on buildings.  
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